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Diagonalization and Simultaneous Symmetrization 
of the Gas-Dynamic Matrices 

By R. F. Wanning, Richard M. Beam and B. J. Hyett 

Abstract. The hyperbolicity of the unsteady, inviscid, gas-dynamic equations implies the 

existence of a similarity transformation which diagonalizes an arbitrary linear combina- 

tion 1 kiA. of coefficient matrices Ai. The matrix T that accomplishes this transforma- 
tion is given explicitly, and the spectral norms of T and T are computed. It is also 

shown that the individual matrices Ai are simultaneously symmetrized by the same simi- 

larity transformation. Applications of the transformations T and T 1'and their norms in- 

clude the well-posedness of the Cauchy problem, linear stability theory for finite-differ- 

ence approximations, construction of difference schemes based on characteristic relations, 

and simplification of the solution of block-tridiagonal systems that arise in implicit time- 

split algorithms. 

1. Introduction. The inviscid gas-dynamic equations in nonconservative form in 
three space variables can be written as 

(1.1) -? 
t 

j A. -=0, (l.l) ~~~~at ' jaax.=? 
j=1 I a 

where the vector u and the matrices A, are 

p Ul ~p 0 0 01 
ul 0 ul o 0 O/P 

u = U2 ' Al = O ? Ul ? ? 

U3 ? ? ? ul 0 

P _? pC2 0 0 U1i 

U2 O p 0 0 U3 0 0 p 0 
? U2 ? ? ? 1 U3 0 0 0 

"I2 = ? 0 ? 2 0 llp A3 O O U3 0 0 
? ? ? U2 0 0 0 0 u13 i/p 

0 0 PC2 0 U2 i0 0 0 PC2 U3 

The elements of u are density, velocity components, and pressure and c = c(p, p) is the lo- 
cal sound speed. Associated with (1 .1) is a matrix P defined by 

3 3 

(1 .2) p = E k.A -, kjA,(u), - ?? < kj < ??. 
j=1 j-l 
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The quasi-linear system (1.1) is called hyperbolic at the point (x, t, u) if there exists a non- 
singular matrix T(k) such that 

xi 
X2 0 

(1.3) T-'PT =3 
0 X4 

where the eigenvalues X1 of P are real and the norms of T and T-1 are uniformly 

bounded in k = (kl, k2, k3)t, i.e., 

(1.4) IITII IIT-ll <K. 

In Section 2 of this paper, we give explicit formulas for the matrices T and T-1. 
These matrices are rather simple in appearance and, by careful normalization of the col- 

umns of T, we have found that both TTt and its inverse are sparse (Tt denotes the 

transpose of T). Consequently, the spectral norms of T and T-1 are readily computed 

and we give explicit formulas for them. In addition, the similarity transformation 

T-'A1T simultaneously symmetrizes the matrices Ai for arbitrary k (Section 3). The 

importance of symmetrizing the coefficient matrices has been discussed in a recent pa- 

per by Turkel [14]. 
The relation between the matrices A, of the nonconservation form (1.1) and the 

Jacobian matrices of the conservation law form is given in Section 4. In fact, these ma- 
trices are similar [12, p. 363] and the transformation is given explicitly. 

Finally, in the last section, several applications of the transformations are indica- 
ted. 

2. Bounded Transformation Diagonalizing P. The eigenvalues of P are easily found 
to be 

xi = X 2 = 3 = k *u, 
(2.1) 

\4 = k - u + c(k - k)112, A5 = k *u - c(k * k)l /2, 

where 
3 3 

k.k= Zkj , k u=Zkuj. 
j=1 j=1 

Although the matrix P has an eigenvalue of multiplicity three, it has a complete set of 

linearly independent eigenvectors and, consequently, the matrix T is constructed using 

these eigenvectors as columns. Hence, we find 

k 1 k2 k3 p/(c) p/(c) 
O k k k /N ~ - k /N~ k3 12 k1/~~k/' 

(2.2) T 0k - k k2/V/ -k2/v'k j' 
- k2 ki ? k 3 /N2 -k3 /N2 

LO O O pc/V2 pc//5i2I 

where k= k(k k)l/2 The jth column of T is a right eigenvector corresponding to 
[he eigenvalue X.. The inverse of T was formed from the left eigenvectors of P: 
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-k o k3 k2 kl /C 
0 k2 ki1c 

k2 -k3 2 7Z/ 
(2.3) 1= k3 k2 2 O 

O kTIV k2/k k3/ l/(pc) 

o0 -k //2- k2/ - k3/V/2 l/(V2ipc) 

The determinants of T and T-1 are 

(2.4) det T = (det T-1)-1 = pc. 

The spectral norm of the matrix T can be computed from the formula 

(2.5) 1TII = [r(TTt)l1 /2 

where r(TTt) is the spectral radius of TTt. The eigenvectors comprising the matrix T 
as given by (2.2) were judiciously normalized so that the product TTt led to the sparse 
matrix 

(2.6) 7t = I + Q, 

where I is the identity matrix and Q is a matrix whose elements are all zero except for 
the four corner elements: 

(2.7) q11 = (plc)2 q15 =q51 = p2, q55 = p2C2 -1. 

The singular values of T (i.e., the eigenvalues a of TTt) are readily found to be 

(2.8) ff = 1 1 
? 

? + 
(q>2 -2 + c2 + p2c4 

2c2 
and consequently, 

(2.9) 11 T12 = max= (2 _ 4p2c 
2c 2 

Likewise, the product (T-1)tT-l leads to a matrix with the following simple structure: 

(2.10) (T-1)tT-l =I+ R, 
where R is a matrix whose elements are all zero except for the three corner elements: 

(2.11) r1= = =r -1/c2, r5 = 
2 

+ c - p c 

The eigenvalues K of (I + R) are 

(2.12) K = 1, 1, 1, p? (- p2c6)112 
2p2c 4 

and hence, 

(2.13) IIT1 112 - max K = ? ( - 4p2c6)11/2 

2p 2c4 
Finally, we note that 

(2.14) 11 Thl = (det T)l1 T-1 11. 

Since the norms of T and T-1 are independent of the real parameters kI, they 
are uniformly bounded in k as required by (1.4). 
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In a curvilinear coordinate system, the first-order system (1.1) is altered by the ad- 
dition of a nonhomogeneous term, and the matrices Ai are replaced by A1/hj where hj 
is a scale factor. The transformations of this section are still valid since the kj's are ar- 
bitrary real numbers which can be redefined to absorb the scale factors. 

3. Symmetrization of the Matrices Aj. The matrix T, given by (2.2), was construc- 
ted to diagonalize the matrix P defined by (1.2). In addition, this same transforming 
matrix T simultaneously symmetrizes the individual matrices Aj. This result can be writ- 
ten in partitioned form as follows: 

B. (3.1) T-1A T =[ i5 ] j 1=1, 2, 3, 

where Dj and Cj are the diagonal matrices 

uj uj + ck 0 
Dj= O uj O Cj . 

O O uj _ O uj -ckj_ 

and 

[i)~~~~~ ~ 32 21 X2t~ '3 t k B1 =74=k3 k3] B2=+[ 0] B3=~~[k kj. 

It may be of interest to comment on how we obtained the above symmetric form. 
In general, a transformation T which diagonalizes P will not symmetrize the individual 
matrices Ai. In fact, the original T, say To, which we constructed did not symrpetrize 
the Aj's. But when we made the individual calculations To 1AjTo, the results were 
nearly symmetric and it was more or less obvious how to renormalize the columns of 

To to achieve the symmetric form (3.1). This same renormalization also led to a sparse 
form for TTt. 

A more direct approach would be to first find some particular matrix S that 
would simultaneously symmetrize the A,'s. Then S1PS would be symmetric and, con- 
sequently, this matrix could be diagonalized by an orthogonal matrix U. If we define 
T = SU, then this matrix would simultaneously diagonalize P and symmetrize the Aj's. 
However, we are unaware of any systematic procedure of simultaneously symmetrizing 
a set of noncommuting matrices such as those defined by Eq. (1.1). 

The symmetric form (3.1) is, of course, not unique, since any orthogonal similari- 
ty transformation on (3.1) yields a symmetric matrix. For example, if U is the 5 x S 
orthogonal matrix 

the3 n 

then 
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[F. H.] 
Ut(Tl-A 1T) U K j=1, 2,3, 

HtU. 

where E = uI 4, In is the n x n identity matrix, and 

Hf=c[O,-k3,k2,72 ], Hk = c[k3,O,-k ,k2], H3 =c[-k2,k1,O,k3]. 

4. Transformations for Conservation Law Matrices. The gas-dynamic equations 
(1.1) can also be written in conservation law form as 

(4.1) ~ ~ ~ ~ ~~i"" 3 3F. 
(4.1) aU + : Iax = 0, 

at j=1 jx 
where 

p ~ ~ F pu1 
~ pu 1pulu1 + P651 

U =pU2 'Fi 
= PU2Uj + P52 X 

pu3 pU3Uj 
+ 

P631 _eT_ uj(eT + p) 

3 
eT= P" + q2q2 

- 
E 2 

'Y 
- 1 2 ~ j=1 Ui 

50 is the Kronecker delta and 'y is the ratio of specific heats. Eq. (4.1) can be reex- 
pressed as 

(4.2) aU+ A aZ O 

where the A 's are the Jacobian matrices aF./aiu. 

The matrices A1 of the nonconservative form (1.1) and the matrices Ai of the con- 
servative form (4.1) are related by the similarity transformation 

(4.3) Ai = AM 

where M is the Jacobian matrix 3iu/au. Computing the requisite derivatives, we find 

F 1 0 0 0 0 1 
~ I U1 p 0 0 0? 

(4.4) M au~IU (4 4) ~~M = au = U2 O p O O 

U3 0 0 p O 

2/2 Pu1 PU2 pU3 1/('y- 1) 
and 

~ 1 0 0 0 0 

(4U5/p l/p ) - O 

45 M- = au = U2/P 0? l/p 0 0 
- U3/p 0 0 lI/p 0 

T hs fq2 o(re_ x)Uap -l(e- ,)U (y- O)3 (y- 1) 

Thus, for example, 
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A1 =MA 1M-1 

0 1 0 0 0 

(72lq2 - u 2 - ( y 3)ul -(,y - l)u2 -( )3 (y-1 

- - u1 u2 U2 U1 0 0 

-U1u3 U3 0 U0 ? 

L a1 a52 -(e - l)ulu2 - (Y- 1)Ulu3 Yu1 

where 

a51 = K( - 1)Ulq - 'YeTUl/pI, a52 = [yeT/p - (Y - 1)(u2 + q2/2)]. 

The matrices A, are quite complicated compared with the simple form of the matrices A 
of Eq. (1.1). If one is concerned with constructing the transformation which diagona- 
lizes P =_ j= k1Aj or if one wants to symmetrize the matrices Ai, it is far simpler to 
use the.similarity transform (4.3) and work directly with the A1's. For example, to 
symmetrize Ap, we write simply 

(4.6) T-1M-1A.'MT= T-1A.T, 
i I 

and the symmetric result is given by the previous calculation (3.1). 

5. Applications. 
(a) The Cauchy Problem. It is known that if a first-order system 

(5.1) au +A au =0 
at 'ai X. 

(with constant coefficients) is hyperbolic, then the Cauchy problem is well-posed (see, 
e.g., [7]). It is of interest to see how the results of Section 2 fit into a more general 
theory developed by Kreiss [6]. He proved the following theorem: The Cauchy problem 
for the system (5.1) is well-posed if and only if there exist real constants C > 0 and a, 
and a positive definite Hermitian matrix H(k) for which 

(5.2a) C1' < H(k) < CI 
and 

(5.2b) H(k)P(ik) + P*(ik)H(k) < 2aH(k), 
where 

P(ik) = i Z kj1Aj. 

Here Kreiss' theorem has been specialized to the particular case of the system (5.1). 
For the (linearized) gas-dynamic equations, a positive definite Hermitian matrix that ful- 
fills conditions (5.2) is the sparse matrix given by (2.10). The constant C is the maxi- 
mum of the eigenvalues (2.9) and (2.13), and a is zero. 

The general theory of well-posedness developed by Kreiss [6] includes Eq. (5.1) 
with variable coefficients where the matrices A1 = A,(x, t) are smooth functions of x 
and t. In the nonlinear case, A, = Aj(u, x, t) and the Cauchy problem is only well- 
posed in a sufficiently small interval 0 < t < T [7], [12]. 
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(b) Stability Theory. Linear stability theory for finite-difference approximations 
to the hyperbolic system (1.1) or (4.2) is based on linearized versions where the matrices 

A, (or A,) are assumed to be constant. The simplest situation occurs when the amplifi- 
cation matrix G [12] is a polynomial in the matrix P defined by (1.2). In this case, G 
is diagonalized by a similarity transformation where the matrix that accomplishes the 
similarity is given by (2.2). Since T and T-1 are bounded independent of k, the von 
Neumann condition is sufficient as well as necessary for stability. Examples of two- 
step, Lax-Wendroff methods where G is a polynomial in P are the algorithms proposed 
by Rubin and Preiser [13], [2] and Zwas [15]. 

In a recent paper, Turkel [14] gave a similarity transformation that symmetrizes 
the matrices A, (see Eq. (4.2)) for the case of two spatial dimensions. (The same trans- 
formation was given earlier by MacCormack [8].) The extension to three spatial dimen- 

sions is given by the similarity transformation (4.6). Turkel used the resulting sparse 
symmetric forms to simplify the linear stability analysis in situations where it is neces- 
sary to compute the spectral radius of G *G to provide a sufficient stability analysis. 

(c) Difference Schemes Based on Characteristic Relations. There are several meth- 
ods of constructing difference schemes for multidimensional hyperbolic systems which 
utilize characteristic relations in their derivation. The eigenvalues and eigenvectors of 
the matrix P, defined by (1.2), play an essential role in these methods. The method de- 

scribed by Magomedov and Kholodov [10] uses the eigenvalues of the matrices A, and 
the similarity transformations that diagonalize each A1. For the gas-dynamic equations 
(1.1), the requisite eigenvalues and transformations are given by Eqs. (2.1), (2.2), and 

(2.3) by a proper choice of k. 
Johnston and Pal [5] have derived a difference method which makes use of the bi- 

characteristics of the system. In this technique, one needs the eigenvalues of the ma- 
trix P. Appropriate derivatives of these eigenvalues yield the bicharacteristics of the sys- 
tem. The difference scheme then follows by an approximate integration along a bichar- 

acteristic. The resulting difference schemes [5] are such that the amplification matrix 
is a linear function of P. Hence, the von Neumann condition is necessary and sufficient 
for stability, as described in the first paragraph of Section 5(b). 

(d) Implicit Split Algorithms. Efficient explicit algorithms for the hyperbolic sys- 
tem (1.1) or (4.1) can be constructed with the aid of the method of fractional steps or 
time splitting (see, e.g., [9], [3]). There is some motivation for considering implicit 
methods because of the time-step limitations inherent in explicit algorithms. Although 
multidimensional implicit methods require the solution of large sparse matrices, the 
method of fractional steps provides an efficient solution procedure. For example, a 

time-split, implicit, (Crank-Nicolson) algorithm for the system (1.1) is the following: 

(5.3a) (Li)un + 1/3 = (L )un, 

(5.3b) (L2)un+2/3 = (L2)un+1/3 

(5.3c) (L3)un+l = (L3)Un+2/3 
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where 

(L) V[I ? AtAj(Do)x.] 
and 

Uij1 + 1,12,j3 -u 1-1 j3 
(Do)x1u 2Ax1 

with similar definitions for (Do)X2 (Do)x3. 
In order that the above algorithm be uniformly second order in the time and spa- 

tial increments At, Ax,, the matrix coefficients Ai must be evaluated within some pre- 
dictor-corrector sequence and the order in which the operators L1, L2, L3, appear must 
be reversed when the solution is advanced in the next time step, i.e., n + 1 -* n + 2. 
We will not go into these details which are discussed elsewhere [11]. 

Each fractional step of the algorithm (5.3) requires the solution of a block-tridiag- 
onal system whose submatrices are each of order 5. There is a well-known direct meth- 
od [4] for solving tridiagonal matrices and a generalization for block tridiagonals. For 
the present application, 5 x 5 matrices must be inverted in the sequence of steps re- 
quired for the direct solution. However, we can take advantage of the fact that the ma- 
trices Ai are each diagonalized by the similarity transformation T- AiT by appropriate 
choice of the parameters k,. If the A1's were spatially constant, we could change varia- 
bles by introducing w = T-lu and obtain an uncoupled set of equations for the com- 
ponents of w. Otherwise, we can still effect a considerable simplification if we properly 
take into account the dependence of the Ai's upon the vector of dependent variables u. 
For example, if we multiply Eq. (5.3a) by T-1(k) with kt = (1, 0, 0) and write out the 
resulting equations, we find we can invert the operator on the left of (5.3a) by solving 
one block-tridiagonal system with 2 x 2 submatrices (which are easily inverted analyti- 
cally) followed by three scalar tridiagonal inversions. An equivalent reduction can be 
achieved by reordering (multiplying by a permutation matrix) the elements of the vec- 
tor u in each fractional step of algorithm (5.3). A more complete description of the al- 
gorithm and numerical computations for unsteady aerodynamic flows will be reported 
elsewhere [1]. 
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